Paley–Wiener Theorems on the Siegel Upper Half-Space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Revisiting the Siegel Upper Half Plane Ii

In this paper we study the automorphisms of Siegel upper half plane of complex dimension 3. We give the normal forms and classify the set of fixed points of such transformations. 1

متن کامل

Revisiting the Siegel Upper Half Plane I

In the first part of the paper we show that the Busemann 1-compactification of the Siegel upper half plane of rank n: SHn = Sp(n, R)/Kn is the compactification as a bounded domain. In the second part of the paper we study certain properties of discrete groups Γ of biholomorphisms of SHn. We show that the set of accumulation points of the orbit Γ(Z) on the Shilov boundary of SHn is independent o...

متن کامل

Carleson Measure and Tent Spaces on the Siegel Upper Half Space

and Applied Analysis 3 The dilations on H are defined by δz δ z′, t δz′, δ2t , δ > 0, and the rotation on H n is defined by σz σ z′, t σz′, t with a unitary map σ of C. The conjugation of z is z z′, t z′,−t . The norm function is given by |z| ∣∣z′∣∣4 |t| )1/4 , z ( z′, t ) ∈ H, 1.5 which is homogeneous of degree 1 and satisfies |z−1| |z| and |zw| ≤ C |z| |w| for some absolute constant C. The di...

متن کامل

Sharp Hardy-littlewood-sobolev Inequality on the Upper Half Space

There are at least two directions concerning the extension of classical sharp Hardy-Littlewood-Sobolev inequality: (1) Extending the sharp inequality on general manifolds; (2) Extending it for the negative exponent λ = n−α (that is for the case of α > n). In this paper we confirm the possibility for the extension along the first direction by establishing the sharp Hardy-Littlewood-Sobolev inequ...

متن کامل

Equivariant Vector Bundles on Drinfeld ’ S Upper Half Space Sascha

Let X ⊂ PdK be Drinfeld’s upper half space over a finite extension K of Qp. We construct for every GLd+1-equivariant vector bundle F on PdK , a GLd+1(K)equivariant filtration by closed subspaces on the K-Fréchet H(X ,F). This gives rise by duality to a filtration by locally analytic GLd+1(K)-representations on the strong dual H(X ,F). The graded pieces of this filtration are locally analytic in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fourier Analysis and Applications

سال: 2019

ISSN: 1069-5869,1531-5851

DOI: 10.1007/s00041-019-09662-4